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Different types of fuels and vehicle technology options for different
transport modes?
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Production of
electrofuels

(power-to-gas/liquids)

Why do
electrofuels get
SO much
attention now?
Three possible
driving forces...

How to utilize or
store possible
future excess
electricity

How to substitute fossil
fuels in the transportation
sector, where especially

aviation and shipping face

challenges utlilizing
batteries and fuel cells.
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Electrofuels \ ‘
power-to-gas

Methane (CH,)
Methanol (CH;0H), DME (CH;0CH,)
Higher alcohols, e.g., Ethanol (C,H.OH)
Higher hydrocarbons, e.g., Gasoline (CgH ;)

CO, from air
and seawater
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CO, from combustion

Biofuel production
e.g. Anaerobic digestion or
gasification

Biomass

e.g household waste,
agriculture or forest
residues

@ Biofuels

How to utilize the
maximum of carbon in
the globally limited
amount of biomass
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Introducing the term ”Bio-e-fuels™

[ Renewable electricity

) N\
Biomass feedstock Biomass conversion process
Lignocellulosic or organic waste as e.g. anaerobic digestion or thermal
manure, food processing, straw etc. ) gasification y

Bio-e-fuels are generated by adding electrolytic hydrogen to a biomass-based conversion process
(such as anaerobic digestion or biomass gasification) to increase the production yields by utilizing the
excess CO, or CO generated in the biomass conversion process.

This will generate additional fuel without the need for carbon capture.

Production cost for bio-e-fuels is built up by summing costs for electricity, biomass feedstock, and
annuitized CAPEX for electrolyzer and the gasifier or anaerobic digester.

Costs are spread over the entire volume of fuel produced.
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Production costs for electrolytic hydrogen,
bio-e-fuels, and e-fuels

Liguefied bio-electro-methane (from biogas)
Compressed hydrogen
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Dark colored bars: Near-term cost,
approx. 5-10 years in future.
Results 110-230 €/MWh.

Light colored bars: long-term cost,
approx. 20-30 years in future.
Results 90-160 €/MWh.

Black dotted lines illustrate a range
of production costs of fossil
gasoline/diesel/kerosene,
corresponding to an oil price range
of $30-5100/barrel.

Note: no cost for fuel infrastructure
nor hydrogen storage, and no
revenue for oxygen, are included.

Acronyms used:

DME: dimethyl ether;

MTG: methanol-to-gasoline;
MTJ: methanol-to-jet;

FT: Fischer-Tropsch.

Grahn et al (2022) Review of electrofuel feasibility: Cost and environmental impact. Progress in Energy 4 (3) 032010. doi.org/10.1088/2516-1083/ac7937.
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Production cost e-methanol

depending on capacity factor and electrolyzer investment cost, 2050, Reference case
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Using long-term values
from the literature review
and electricity prices as well
as hydrogen storage costs
from the eNODE model.

Results (for electrolyzer
CAPEX 300-450 €/kW and
capacity factors 45—65%):

91-100 €/MWh for
Hungary-Croatia-Slovenia

84-94 €/MWh for southern
eden.

76-86 €/MWh for Ireland

78-86 €/MWh for west
Spain

rn

10-16% higher costs
compared to Ireland
and western Spain

Grahn et al (2022) Review of electrofuel feasibility: Cost and environmental impact. Progress in Energy 4 (3) 032010. doi.org/10.1088/2516-1083/ac7937.
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A E-methanol ICE among &
the highest in many
criteria
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Environmental impacts
of 9 fuel and propulsion
options for shipping

Hydrogen and battery electric,

- Example of
typically perform the best. when trade-offs
Ammonia and methanol are needed

among the worst

Acronyms used: eMeOHICE=electro-methanol in internal
combustion engines, eMeOHICE w PostCC= electro-
methanol in internal combustion engines with post carbon
capture, HyMethShip= electro-methanol in ICE with pre-
combustion carbon capture following the EU-project
concept HyMethShip, eLH2ICE=liquefied electrolytic
hydrogen used in internal combustion engines,
eNH3ICE=electro-ammonia used in internal combustion
engines, eLH2PEMFC= liquefied electrolytic hydrogen
used in PEM fuel cells, eNH3SOFC= electro-ammonia used
in solid oxide fuel cells, BE= battery electric operation,
MGOICE= fossil oil-based marine gas oil used in
combustion engines.

Ref. Kanchiralla, FM, Brynolf S, Malmgren E, Hansson J,
Grahn M (2022) Life Cycle Assessment and Costing of
Fuels and Propulsion Systems in Future Fossil-Free
Shipping. Environmental Science and Technology 56(17),
12517-12531. https://doi.org/10.1021/acs.est.2c03016
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General reflections on electrofuels

Advantages are e.g.,
Liquid fuels are less complex to store and distribute, compared to hydrogen.
Can be used in all modes of transport. Particularly interesting for sectors as shipping and aviation where liquid fuels with

high energy density are difficult to replace.
Some can be used in existing vehicles (less need for large investments in new distribution and tank infrastructure).

Address difficulties connected to behavior challenges (hydrogen fueling, battery charging etc).

uuuuuuuuuuuuuuuuuuuuuu

Challenges are e.g.,
Low energy conversion efficiency. From the electricity grid to the wheels of a car, over 70% of the energy is retained if an
electric car is used, while approximately 20-25% is retained for electrofuels used in internal combustion engines. That is,
it make sense to use battery electric solutions when possible.
High production costs. Future costs are uncertain but likely higher than e.g., biofuels.

It is most likely that parallel solutions will be developed, e.g.
There are many advantages for electric solutions in cities (Battery electric and hydrogen fuel cells). Aspects like a
reduction of NOXx, soot, and noise. Most likely different electric solutions in cities (electric buses, cars, delivery trucks,
trams, metro etc).

There are several challenges for electrifying long-distance transport (especially ships and aircraft). Electrofuels may
complement biofuels for these transport modes.
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Mer om
elektrobranslen

Popularvetenskplig sammanfattning

https://f3centre.se/en/fact-
sheets/electrofuels/
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