About the project

Gasification-based biofuel production systems have a large potential to contribute to climate change mitigation in the transport sector. The commercial feasibility of renewable energy technol­ogies is affected by fossil fuel prices, the price of biomass and policy instruments, for example a cost for carbon dioxide equivalents (CO2e).

The aim of this project has been to analyze and quantify the level of a sector specific greenhouse gas (GHG) emission cost (per CO2e) in transport required for making gasification-based biofuel pro­duction systems profitable under different future energy market scenarios. The analysis of the gasification-based systems builds upon the earlier work by the project participants and includes production systems of synthetic natural gas (SNG), methanol and Fischer-Tropsch fuels. The future energy market scenarios are based on the fossil fuel prices in the ”New Policy Scenario” and ”450 ppmv Scenario” presented in World Energy Outlook 2016. The project analysis also includes a comparison of the profitability and GHG emission re­duction potential from the gasification-based systems to systems where the same amount of bio­mass is used in conventional conversion technologies to produce electricity and where the electrici­ty is used in battery electric vehicles.

The results show that the level of the sector specific CO2e cost required to make the gasification-based systems profitable is not higher than the current level of CO2 tax in Swedish transport sector. Also, the results show that the systems where the biomass is used for electricity production and in BEV have higher profitability than the gasification-based systems. However, the electricity-based systems have a stronger dependency on heat sinks and a high price for delivered heat.

Facts

Manager
Kristina Holmgren, earlier at IVL

Contact
kristina.holmgren@vti.se

Participants
Tomas Lönnqvist, IVL // Thore Berntsson, Chalmers

Time plan
May 2016 - November 2017

Total project cost
250 000 SEK

Funding
The f3 partners and IVL. Additional funding has been provided by Göteborg Energi foundation for research and development.