The pulp industry can meet the need for renewable drop-in fuels

Strategically important drop-in biofuels can be produced from pulp industry by-products in a costeffective way, creating profits for economy and climate.

As a result of the introduction of the reduction obligation for petrol and diesel fuels in 2018, demanding an increase in the share of biofuels in fossil vehicle fuels, the demand for renewable drop-in biofuels is expected to grow. This is an important measure in order to reach the Swedish climate targets stating that GHG emissions from road transports need to be reduced by 70 percent between the years 2010-2030.

For the first time, researchers have tested and compared the economic competetiveness of drop-in fuels produced from black liqour, a by-product from pulp production. Two technology pathways have been investigated: lignin separation and black liquor gasification. The results show that drop-in biofuels can be produced from BL part-streams with production costs of around 80 EUR/MWh (ca. 7-8 SEK/l), thereby equalling or bettering the economic performance of comparable forest residue-based fuels.

The techonology has great potential to increase the supply of high-GHG performance fuels in a cost-effective way, and to reduce the emissions from the existing vehicle fleet. The technology is also beneficial from a business point of view. Pulp mills looking to broaden their product portfolios can increase pulp capacity and at the same time lower their total costs.

The fuel production costs can be reduced by up to 23 percent using the synergy effect. It it is allocated to the pulp production instead, a gross margin of 35-70 percent for the increased production volume can be achieved.

In a webinar on 11 November 2020, project manager Elisabeth Wetterlund presented results from the project (in Swedish). The webinar was recorded and can be seen here:

Facts

Manager
Elisabeth Wetterlund, Bio4Energy (LTU)

Contact
elisabeth.wetterlund@ltu.se

Participants
Yawer Jafri and Fredrik Granberg, Bio4Energy (LTU) // Erik Furusjö, Johanna Mossberg and Sennai Mesfun, RISE // Christian Hulteberg and Linnea Kollberg, SunCarbon AB // Klaas va der Vlist, Smurfit Kappa Kraftliner // Henrik Rådberg, Preem // Roland Mårtensson, Södra

Time plan
September 2018 - June 2020

Total project cost
2 034 427 SEK

Funding
Swedish Energy Agency, the f3 partners, Bio4Energy (LTU), Preem AB, Smurfit Kappa, SunCarbon and Södra skogsägarna ekonomisk förening

Swedish Energy Agency's project number within the collaborative research program
46982-1