About the project

Often, only a fraction of the biomass feedstock carbon ends up in the product in biofuel production. This means, in the short run, that the climate benefits of biofuels are reduced since the carbon dioxide that remains unused contributes to the carbon debt, a critical subject in the overall discussion about biofuel sustainability. In a longer run, this leads to inefficient use of the carbon dioxide, compared to a scenario in which 100 percent of the biogenic carbon would be utilized in a product and replace, for example, fossil fuels. Future technologies for biomass conversion and utilization can be expected to need to show high carbon efficiency or facilitate negative emissions in order to be legitimate and competitive. According to the IPCC, this will be necessary if emission reductions and measures to reduce energy and land use are no enough to limit the global warming to 1,5 degrees Celsius.

This project will perform a systematic evaluation of possibilities to increase the utilization and utility of biogenic carbon in biofuel production, by increasing the proportion of biogenic carbon that ends up in products, or by storing part of the carbon. One of the prominent methods when it comes to technologies for negative emissions is BECCS/BECCU, Bio-Energy with Carbon Capture and Storage/Utilization. Sweden has been identified as a suitable country for implementation of BECCS in the near future, with high potential for negative emissions specifically in the pulp and paper industry.

In the project, a range of biofuel production tracks will be evaluated and compared regarding carbon, climate, and cost efficiency, with as well as without carbon dioxide capture followed by utilization (BECCU) or storage (BECCS). The aim is to produce a knowledge-based decision support regarding technology selection in the short as well as longer term regarding “future-proof” biofuels with production processes that don not “waste” biogenic carbon.

Results from the study were presented (in Swedish) in a webinar on 24 March 2022:


Elisabeth Wetterlund, Bio4Energy (LTU)


Erik Furusjö and Johanna Mossberg, RISE // Simon Harvey, Chalmers // Christian Hulteberg, SunCarbon // Peter Axegård, C-Green // Monica Normark, SEKAB // Conny Johansson, Stora Enso // Harri Heiskanen, Neste // Andreas Gundberg, Lantmännen Agroetanol // Ragnar Stare, Arvos Schmidsche-Schack GmbH

Time plan
July 2019 - December 2021

Total project cost
3 626 190 SEK

Swedish Energy Agency, the f3 partners, LTU, Arvos Schmidsche-Schack GmbH, C-Green, Lantmännen Agroetanol, Neste, SEKAB, Stora Enso and SunCarbon.

Swedish Energy Agency's project number within the collaborative research program